skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hartmann, Morghan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Today, patients are demanding a newer and more sophisticated health care system, one that is more personalized and matches the speed of modern life. For the latency and energy efficiency requirements to be met for a real‐time collection and analysis of health data, an edge computing environment is the answer, combined with 5G speeds and modern computing techniques. Previous health care surveys have focused on new fog architecture and sensor types, which leaves untouched the aspect of optimal computing techniques, such as encryption, authentication, and classification that are used on the devices deployed in an edge computing architecture. This paper aims first to survey the current and emerging edge computing architectures and techniques for health care applications, as well as to identify requirements and challenges of devices for various use cases. Edge computing application primarily focuses on the classification of health data involving vital sign monitoring and fall detection. Other low‐latency applications perform specific symptom monitoring for diseases, such as gait abnormalities in Parkinson's disease patients. We also present our exhaustive review on edge computing data operations that include transmission, encryption, authentication, classification, reduction, and prediction. Even with these advantages, edge computing has some associated challenges, including requirements for sophisticated privacy and data reduction methods to allow comparable performance to their Cloud‐based counterparts, but with lower computational complexity. Future research directions in edge computing for health care have been identified to offer a higher quality of life for users if addressed. 
    more » « less